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Abstract
The electronic structure of a σ -FeCr compound in a paramagnetic state was calculated for the
first time in terms of isomer shifts and quadrupole splittings. The former were calculated using
the charge self-consistent Korringa–Kohn–Rostoker (KKR) Green’s function technique, while
the latter were estimated from an extended point charge model. The calculated quantities
combined with recently measured site occupancies were successfully used to analyze a
Mössbauer spectrum recorded at room temperature using only five fitting parameters namely
background, total intensity, linewidth, IS0 (necessary to adjust the refined spectrum to the used
Mössbauer source) and the QS proportionality factor. Theoretically determined changes of the
isomer shift for the σ -FeCr sample were found to be in line with the corresponding ones
measured on a α-FeCr sample.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The σ -phase belongs to the so-called Frank–Kasper phases,
whose characteristic feature is a complex crystallographic
structure, and, in particular, high coordination numbers.
Consequently, understanding of the physical properties of such
phases has been not straightforward and easy. In particular,
the time that elapsed between its discovery [1] and the
identification of its crystallographic structure [2] was about 30
years. The complexity of the structure results in difficulties
both in the interpretation of the experimental results as well
as in the theoretical calculations. Concerning the latter, only
a few papers have been published on the σ -phase in the Fe–
Cr system, none of them related to its electronic structure.
Nowadays, over 50 examples of binary alloy systems are
known in which the σ -phase is formed [3]. It occurs often in
materials that are technologically important and its presence
drastically deteriorates their mechanical properties. Hence,
the basic investigation of structural, electronic and magnetic
properties is of quite general interest.

3 Author to whom any correspondence should be addressed.

The Fe–Cr σ -phase precipitates from the α-phase
during an isothermal annealing in the temperature range of
∼530 ◦C < T < ∼830 ◦C mostly on the grain boundaries
and in the form of sub-micrometer sized needles and/or
lamellae. Its physical properties are substantially different
from those characteristic of the α-phase (bcc), from which it
precipitates [3].

Mössbauer spectroscopy belongs to the most suitable
methods for the investigation of the structural properties
and magnetic behavior of the Fe–Cr σ -phase. This stems
from its high sensitivity to the hyperfine parameters, which
are strongly influenced by the local configuration of nearest
neighbor (NN) atoms of the 57Fe atom probe. A typical
Mössbauer spectrum of the Fe–Cr σ -phase must be composed
of at least five subspectra with various intensities related to
the iron occupation of five inequivalent crystallographic sites.
Although the corresponding hyperfine parameters (isomer
shift, IS and quadrupole splitting, QS) differ from each other,
the differences are comparable or smaller than the typical
experimental linewidths. Consequently, the spectrum is not
well resolved, even below the Curie temperature (Tc ∼
30 K in σ -Fe53.8Cr46.2). Some of the parameters describing
the spectrum could be determined in other experiments
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Figure 1. 57Fe Mössbauer spectrum of the σ -Fe53.8Cr46.2 alloy
recorded at 300 K (dots) compared to the calculated one (solid line).
The subspectra related to the inequivalent sites are indicated by
colored lines. The spectra recorded at (a) 4.5 K and (b) 35 K are
shown in the insets for comparison.

(e.g. relative subspectra contributions should be proportional
to the Fe concentrations on particular sites determined in
the neutron diffraction experiment), but the rest (IS, QS and
linewidths �) should be obtained from the fitting procedure.
Unfortunately, the number of known parameters is too small
and decomposition of the overall spectrum is not a unique task,
since one can make several mathematically correct fits with
different sets of fitting parameters. For that reason we decided
to calculate the electronic structure and the resulting hyperfine
parameters (IS, QS), in various atomic configurations of the σ

Fe–Cr system in order to interpret the experimental Mössbauer
spectrum.

The earlier electronic structure computations of the
transition-element σ -phase focused mainly on crystal stability
and site occupancy preference of the constituent atoms on
five inequivalent sites [4]. Later, it was reported [5] from
the full potential linearized augmented plane waves (FLAPW)
method that the calculated formation energy in Fe–Cr and Co–
Cr σ -phases remained in reasonable agreement with measured
enthalpies. Finally, the vibrational properties of the Fe–Cr
σ -phase were investigated by means of molecular dynamics
simulation [6], which showed some similarities to vibrational
behaviors of the glassy state.

The aim of our work is to calculate the electronic
structure and resulting hyperfine parameters for the most
plausible atomic configurations of the σ -FeCr system in order
to reconstruct the experimental Mössbauer spectrum in the
paramagnetic state.

2. Experimental details

The procedure of σ -Fe53.8Cr46.2 sample preparation is given in
detail elsewhere [7]. 57Fe Mössbauer spectra were recorded
in transmission geometry using a standard spectrometer and a
57Co/Rh source for the 14.4 keV gamma rays at temperatures
4.5, 35 and 300 K. They are presented in figure 1. At first
glance, one notices that the spectra measured above the Curie
temperature (35 and 300 K) are quite similar, whereas a small
magnetic splitting can be observed at 4.5 K. In this work we
focus on the paramagnetic state only.

Table 1. Atomic crystallographic positions and numbers of NN
atoms for the five lattice sites of the Fe–Cr σ -phase.

NN

Site
Crystallographic
positions A B C D E Total

A 2i (0, 0, 0) — 4 — 4 4 12
B 4f (0.4, 0.4, 0) 2 1 2 4 6 15
C 8i (0.74, 0.66, 0) — 1 5 4 4 14
D 8i (0.464, 0.131, 0) 1 2 4 1 4 12
E 8j (0.183, 0.183, 0.252) 1 3 4 4 2 14

3. Computational details

The charge and spin self-consistent Korringa–Kohn–Rostoker
Green’s function method [8, 9, 11] was used to calculate the
electronic structure of the Fe–Cr σ -phase. The crystal potential
of muffin-tin (MT) form was constructed within the local
density approximation (LDA) framework using the Barth–
Hedin formula [10] for the exchange–correlation part. The
group symmetry of the unit cell of the σ -phase (P42/mnm,
#136) was lowered to allow for various configurations of
Fe/Cr atoms. The experimental values of lattice constants [7]
(a = 8.7891 Å, c = 4.5559 Å) and atomic positions
(table 1) were applied in all computations. For fully converged
crystal potentials electronic density of states (DOS), total, site-
composed and l-decomposed DOS (with lmax = 2 for Fe and
Cr atoms) were derived. Fully converged results were obtained
for ∼120 special k-point grids in the irreducible part of the
Brillouin zone but they were also checked for convergence
using a more dense k-mesh. Electronic DOSs were computed
using the tetrahedron k-space integration technique and ∼700
small tetrahedra [12].

3.1. Structural aspects

As aforementioned, the σ -phase has a complex close-packed
tetragonal structure with 30 atoms in the unit cell. Atoms are
distributed over five nonequivalent sites, called A, B, C, D and
E, the population of them is shown in table 1. Each position
can be characterized by:

(i) the total number of nearest neighbors (NN),
(ii) their belonging to one of five sublattices,

(iii) the distances to NN atoms,
(iv) the occupancy by Fe or Cr atoms.

The former three properties (i–iii) can be derived directly
from the space group information and are presented in tables 1
and 2. Each atom in the σ -phase structure is surrounded by
12–15 atoms belonging to various sites (all NN configurations
except for A–A and A–C are possible). Their interatomic
distances range from 2.265 Å (E–E) to 2.922 Å (B–E) (see
table 2 for average values) and can be slightly different even
within the same pairs of atoms (e.g. for C–D three different
values can be noticed). Moreover, the NN spatial distribution is
not far from spherical for each site. Site-occupation parameters
as found from the neutron diffraction data [7] are presented in
table 3. It clearly shows that all five sites are populated by
both alloy constituting elements. The distribution of Fe and
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Table 2. Distances between NN atoms for five lattice sites of the
Fe–Cr σ -phase. The average values with standard deviations
(in parentheses) are indicated, when more than one distance is
possible. The corresponding weighted mean values (dav) are given
in the last row.

Distances (Å)

Site A B C D E

A — 2.605 — 2.366 2.547
B 2.605 2.519 2.420 2.695 2.864(0.005)
C — 2.420 2.749(0.196) 2.487(0.004) 2.766(0.006)
D 2.366 2.695 2.487(0.004) 2.422 2.549(0.019)
E 2.547 2.864 2.766(0.006) 2.549(0.019) 2.280(0.018)
dav 2.506 2.702 2.655 2.572 2.640

Cr atoms over these sites is neither random nor fully ordered,
but within each of the five crystallographic positions it remains
random [7]. The electronic structure and hyperfine interactions
of such complex and disordered systems might be investigated
by the well-established coherent potential approximation
(CPA) combined with the KKR method [11]. However, the
KKR-CPA computations of the binary σ -phase are (at the
moment) too complicated and highly time-consuming to obtain
acceptable results in a reasonable time. Additionally, the CPA
approach tends to average the parameters over all possible
Fe/Cr configurations for the given lattice site. On the other
hand, hyperfine interactions, which are the subject of the
Mössbauer investigations, are mainly sensitive to the local
NN-configuration changes. For that reason we lowered the
symmetry of the unit cell (space group P42/mnm) to the
simple tetragonal one, and the calculations were carried out for
defined atom configurations using the KKR method adapted to
ordered systems. In practice, the tetragonal unit cell and atomic
positions were unchanged but variable occupancy made all 30
atomic positions crystallographically nonequivalent. In such a
specified unit cell each of the crystallographic positions was
occupied exclusively either by Fe or Cr atom. However, in our
numerical attempts we were constrained by the experimental
Fe/Cr concentrations on each of the five lattice sites and
the considered composition should be as close as possible
to the measured stoichiometry of the σ -Fe53.8Cr46.2. The
concentrations used are given in table 3. For example, the
experimentally observed Fe occupancy of site C (8i) was
found to be P(Fe, C) = 0.413, whereas in our computations,
having eight atoms on the position previously defined as ‘C’,
we had to assume five Cr and three Fe atoms to reach the
closest concentration. It is worth noting that each lattice site
is surrounded by all other crystallographic sites occupied by
either Fe or Cr, which can be distributed in different ways. For
the above-mentioned example of the C site, one can distinguish
56 possible nonequivalent Fe–Cr arrangements and over 105

possibilities for all 30 atoms in the unit cell. Fortunately,
there is no need to analyze all possible arrangements because
their influence on the hyperfine parameters can be accounted
for by the number of Fe/Cr atoms in the nearest shell of the
specified 57Fe atom. Consequently, it was enough to restrict
our calculations to arbitrarily chosen atom configurations
(26 different arrangements), which covered most of all the
possible NN-values for each of the five lattice sites. Indeed,

Table 3. Fe site-occupation parameters of the σ -FeCr alloy,
experimental and assumed for calculations. Nt stands for the
percentage of the total Fe atoms in the site (referred to the 30 atom
unit cell), whereas N describes the number of Fe atoms occupying
the site. Ncal represents the value used in the KKR calculations.
The corresponding relative occupancy (percentage) is given in
parentheses. The quadrupole splitting values QS for five lattice
sites as obtained from the fitting procedure are presented in the
last column.

Site Nt N Ncal QS (mm s−1)

A 11.3 1.826 (91.3) 2 (100.0) 0.34
B 6.4 1.040 (26.0) 1 (25.0) 0.24
C 20.5 3.304 (41.3) 3 (37.5) 0.18
D 44.9 7.208 (90.1) 7 (87.5) 0.21
E 17.0 2.744 (34.3) 3 (37.5) 0.45

the above-mentioned assumptions were later supported by
almost linear correlations between calculated charge densities
at the Fe nucleus and its Fe-NN numbers for all five lattice
sites, separately. These correlations were used in further
calculations.

3.2. Isomer shift, IS

The isomer shift is proportional to the difference between the
electron densities in the range of the nucleus for source and
absorber atoms:

IS = 2π

5
Z S(Z)e2 R2 �R

R
[ρA(0) − ρS(0)] (1)

where Z is the nuclear charge of the Mössbauer absorber,
S(Z) is a relativistic correction factor, e is the elementary
charge, R is the average radius of the Mössbauer nucleus in the
ground and excited state and the �R is the difference of these
two radii. ρi (0) is the non-relativistic electron density at the
nucleus for the Mössbauer absorber (i = A) or source (i = S),
which is in practice derived from extrapolation of the electron
charge density to r = 0. Since all factors except the electron
density of the absorber are constant for a given spectrum, it is
sufficient for our purpose to consider a simplified equation for
the IS as follows:

IS = a[ρA(0) − b] (2)

with a and b constants as determined in the calibration
procedure. According to [13], the value of a may vary from
0.367 to 0.403 (au3 mm s−1) (au being atomic units). In our
work the average value of a = 0.385 (au3 mm s−1) was used.
Since only differences between isomer shifts for particular
subspectra are important in the fitting procedure, the b-value
was assumed to be equal to 0.

3.3. Quadrupole splitting, QS

The shifts in the energy levels resulting from the interaction
between the nucleus with a quadrupole moment eQ and the
electric field gradient (EFG) are obtained from

�E = eQVzz

4I (2I − 1)
[3m2 − I (I + 1)](1 + η2/3)1/2 (3)
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where Vzz = ∂2V/∂z2 is the largest component of EFG along
a principal axis and η = (Vxx − Vyy)/Vzz is the asymmetry
parameter. The source of EFG at the nucleus is the character
of the surrounding electron charge distribution. There are two
principal classifications of this external charge:

(a) the electrons directly associated with the Fe nucleus, the
so-called valence contribution V val

zz ,
(b) the charges of other atoms in the lattice, the so-called

lattice contribution V lat
zz .

Hence, the EFG tensor depends on both components [14].
In the most widely used computational approach, charges

external to the central atom are treated as point charges. Hence,
the Vi j -values can be easily calculated according to the formula

Vi j =
∑

ei(3xi x j − r 2δi j)r
−5 (4)

where x1 = x , x2 = y, x3 = z, ei is the electronic
charge on neighboring atom i and δi j denotes the Kronecker
symbol. In this work the procedure for deriving the EFG tensor
was extended to the electron density distributed around each
atom, which goes beyond the point charge approximation. In
practice, the electron cloud inside each MT sphere was divided
into over 105 small volume elements, which represented point
charges in equation (4). Radial charge density distributions for
Fe (ρFe

i (r)) and Cr (ρCr
i (r)), where i denotes each of 30 atoms

in the unit cell, were obtained from the KKR calculations
for each atom and for all considered atom configurations. In
the next step, the mean radial charge density distributions
were calculated using an averaging procedure, i.e. for each
of five lattice sites the ρL(r) (with L = A through E)
was computed by averaging earlier calculated charge density
distributions weighted by the effective occupancy of Fe/Cr on
each site. Using these ρL (r) dependences, Vi j was evaluated
(equation (4)) by summation in the variable distance (in each
crystallographic direction) from the fixed atom. The procedure
was carried out with increasing summation distance until
resulting EFG-values became stable (the difference less than
0.1%). Finally, satisfactory results were obtained for a cube of
seven lattice constants around the 57Fe atom, containing 3375
nearest unit cells (over 105 atoms and electron densities inside
their MT spheres). The resulting EFG-tensors were then used
to calculate the energy shift values �E for each lattice site.

The interaction between V lat
zz and the quadrupole moment

of the 57Fe-nucleus is complicated by the presence of the
Mössbauer atom’s own electrons, especially in d-states. On
the other hand, since the charge density distribution around
each atom in the MT approximation is spherically symmetric,
the calculated Vzz-value related to the valence electron’s cloud
vanishes, which is a serious limitation of this approach. For
that reason we have to assume that the influence of V lat

zz is
dominant and V val

zz is proportional to V lat
zz . Consequently,

the calculated energy shift values �E are proportional to the
QS-values. The proportionality factor γ was assumed to be
identical for all lattice sites, and was calculated in the fitting
procedure of the experimental data. The resulting QS-values
are shown in table 3. It must be mentioned that the obtained
QS-values are only average values for each lattice site.

Figure 2. Probability Pk(NN, c) for finding NN-Fe atoms in the first
coordination shell for the five inequivalent lattice sites in
σ -Fe53.8Cr46.2. k = A · · · E , see equation (6). The solid lines are
shown as a guide for the eye only.

4. Results and discussion

4.1. Probability distribution calculation

Since hyperfine parameters depend mainly on the NN
configuration, it is worth calculating the probability of finding
a definite number of Fe atoms in the nearest shell for each
lattice site. In the case of a random distribution one can use
the Bernoulli formula describing the probability of finding n
atoms of type X in XcY1−c alloy

PB(n, c) =
(

Ntot

n

)
cn(1 − c)Ntot−n (5)

where Ntot stands for the total number of NN atoms and c is the
atomic concentration of X . In the case of the σ -phase there are
five different NN-types with different Ntot and c values on each
site. The NN atoms are distributed on the specified lattice sites
(table 1), so the formula for the kth site should be modified:

Pk(NN, c) =
∑ 5∏

i=1

PB(NNi , ci ); NN =
5∑

i=1

NNi

(6)
where index i denotes the crystallographic site, the summation
in equation (6) runs over all possible combinations of NNi

yielding NN, and c is the atomic concentration of Fe. This
procedure allows us to calculate the probability distribution for
each site separately. As can be clearly seen in figure 2, all
distributions are Gaussian-like curves with similar linewidths
but shifted relative to each other. The most probable numbers
of Fe-NN atoms are markedly different for each site and vary
from 5 (D site) to 9 (B site).

4.2. Charge density distributions

The electron densities at the nucleus for the Mössbauer
absorber ρA(0) were calculated for each lattice site of the Fe–
Cr σ -phase. Figure 3 summarizes our results, depicting the
dependences of ρA(0) on the number of Fe-NN atoms. One
can notice correlations between these quantities, which agree
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Figure 3. Electron densities at the nucleus of Fe calculated for each
lattice site of the Fe–Cr σ -phase (left scale) or, equivalently, isomer
shifts relative to the source, IS (right scale). Solid lines represent the
best linear fits between the ρA values and the number of Fe-NN
atoms. Different symbols denote the calculated ρA values
corresponding to inequivalent sites. The average values of the charge
density (or isomer shifts relative to the source, ISav) are indicated on
the right-hand side of the graph.

well with the anticipated relations. The slopes of the linear
regressions are quite similar and negative (−0.04 au−3 per
one Fe-atom in the first coordination shell on average) for
all sites, which means that one Fe-NN atom decreases the
isomer shift value by �IS ∼ 0.013 mm s−1. The particular
slopes calculated for the σ -phase can be compared to two
experimentally obtained values for the Fe–Cr α-phase. In this
case, �IS equal to 0.020 mm s−1 and 0.009 mm s−1 for the
first and the second neighbor shell, respectively, when one Fe-
neighbor atom is added [15, 16]. A correlation between �IS
for the Fe–Cr α- and σ -phases and the average interatomic
distances dav is presented in figure 4(a). We see that these
quantities markedly decrease in absolute value with increasing
distance, as can be expected. Also the average isomer shift
relative to the source ISav decreases monotonically with dav-
values and becomes the lowest for the closest neighbors
(site A), as shown in figure 4(b). The determined ISav remain
significantly different for each crystallographic position.

4.3. RT Mössbauer spectrum analysis

In our analysis we reasonably assumed the Mössbauer
spectrum to be composed of five subspectra, each of them
represents the distribution of the IS. The relative area under
each subspectrum corresponding to the particular site should
be equal to the number of Fe atoms occupying this site.

Figure 4. (a) The slope of the isomer shift, �IS, dependence versus
average NN distance, dav. Empty and filled circles stand for the
Fe–Cr σ - and α-phase, respectively. (b) The relative to the source
average isomer shift ISav versus dav.

The differences between the Lamb–Mössbauer factors for
nonequivalent positions were considered to be very small, thus
these factors were identical in our analysis. Also, the �-values
were assumed to be the same for all lines.

The RT Mössbauer spectrum was successfully fitted using
the least square method. The relative subspectra intensities
were assumed to be known from recent neutron diffraction
experiments [7], whereas QS- and IS-values relative to the
source as well as the distinct linear dependence of IS on
the NN-Fe atoms were obtained from our KKR calculations.
Each subspectrum was constructed as a sum of double lines
with the same QS-values, IS-values linearly dependent on
Fe-NN numbers and probabilities determined according to
equation (6). It should be mentioned here that there are only
five fitting parameters in the model, namely: background, total
intensity, isomer shift for the B site subspectrum IS0 (necessary
to adjust the refined spectrum to the used Mössbauer source),
linewidth � and proportionality factor γ . The background,
total intensity and IS0 depend on the measurement conditions
only, whereas the two latter parameters are directly connected
with the intrinsic properties of the Fe–Cr σ -phase.

5. Conclusions

In summary, we have calculated the electronic structure in
terms of the hyperfine parameters such as the isomer shift and
the quadrupole splitting of the σ -phase in the FeCr system.
Theoretically calculated values of the spectral parameters
were successfully used in combination with experimentally
determined site-occupation probabilities to fully reconstruct a
57Fe site Mössbauer spectrum recorded at room temperature
on the σ -FeCr sample, using only five adjustable parameters
(background, total intensity, �, IS0 and γ factor). It was also
shown that theoretically determined �IS-values and average
IS-values remain in line with the corresponding quantities
measured in the α-FeCr phase. The latter means that in both
phases the Fe site charge density scales linearly with NN and
NNN distances. Similar scaling behavior of the charge density
(isomer shift) has been shown to exist for the number of NN-Fe
atoms. It is, however, characteristic of a given site.
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